
The Major Mutation Framework

Version 1.3.4

November 10, 2018

Contents

1 Overview 3
1.1 Installation . 3
1.2 How to get started . 4

2 Step by Step Tutorial 5
2.1 Prepare and compile a Mml script . 5
2.2 Generate mutants . 6

2.2.1 Compiling from the command line 6
2.2.2 Compiling with Apache Ant . 6
2.2.3 Inspecting generated mutants . 7

2.3 Analyze mutants . 7

3 The Mutation Compiler (Major-Javac) 9
3.1 Configuration . 9

3.1.1 Compiler options . 9
3.1.2 Mutation scripts . 9

3.2 Logging and exporting generated mutants 11
3.2.1 Log file for generated mutants . 11
3.2.2 Source-code export of generated mutants 11

3.3 Driver class . 12
3.4 Integration into apache Ant’s build.xml . 12

4 The Major Mutation Language (Major-Mml) 14
4.1 Statement scopes . 14
4.2 Overriding and extending definitions . 15
4.3 Operator groups . 16
4.4 Script examples . 16

5 The Mutation Analysis Back-end (Major-Ant) 19
5.1 Setting up a mutation analysis target . 19
5.2 Configuration options for mutation analysis 20
5.3 Performance optimization . 20

2

1 Overview

Major is a complete mutation analysis framework that divides the mutation analysis
process into two steps:

1. Generate and embed mutants during compilation.

2. Run the actual mutation analysis (i.e., run tests on the mutants).

For the first step, Major provides a lightweight mutator, which is integrated in the openjdk
Java compiler. For the second step, Major provides a default analysis back-end that
extends Apache Ant’s JUnit task.

1.1 Installation

This section describes how to install Major for use from the command line or Ant. The
installation is simple — all you need is included in the Major release package!

• Download the Major framework from http://mutation-testing.org/major.zip.

• Unzip major.zip to create the major directory.

• Optionally, update your environment and prepend Major’s bin directory to your
execution path (PATH variable).

The major directory provides the following content:

major
bin.Executables for Major’s components

ant
javac
mmlc

config...................................Archive and sources of Major’s driver
doc...The manual of the current version

major.pdf
example....................Examples for using Major with Ant and standalone

ant
...
run.sh

standalone
...
run.sh

runAll.sh
lib..All libraries used by Major
mml...Example Mml files

3

http://mutation-testing.org/major.zip

1.2 How to get started

Verify that you are using Major’s compiler by running javac -version. The output should
be the following:

major$ javac -version
javac 1.7.0-Major-v1.3.4

Suppose you want to mutate a class MyClass.java. The following command mutates
and compiles MyClass.java using all mutation operators:

major$ javac -XMutator:ALL MyClass.java
#Generated Mutants: 150 (108 ms)

Note that javac must refer to Major’s compiler, which always prints the number of
generated mutants when the -XMutator flag is enabled. Additionally, Major’s compiler
produces a log file (mutants.log) for all generated mutants.
All generated mutants are embedded in the compiled class files. The example directory

provides two examples on how to use mutants to perform mutation analysis on test suites:

• ant: mutation analysis using Apache Ant.

• standalone: mutation analysis using Major’s driver standalone.

Execute runAll.sh within the example directory to run all examples or run.sh in a subdi-
rectory for a particular example. Section 2 provides a step by step tutorial on how to use
Major for a project using Apache Ant, and the subsequent sections describe Major’s
components and configuration options in detail:

• Section 3 provides details about Major’s compiler.

• Section 4 describes Major’s DSL (Mml).

• Section 5 provides details about Major’s default mutation analysis back-end.

4

2 Step by Step Tutorial

This sections provides a step by step tutorial on how to use Major for:

• Configure the mutant generation with Mml scripts (Section 2.1).

• Generate mutants with Major’s compiler (Section 2.2).

• Run mutation analysis with Major’s back-end (Section 2.3).

You can find all files and the triangle program, which are used in this tutorial, in the
example and mml directories (see Section 1.1).

2.1 Prepare and compile a Mml script

Major’s domain specific language (Mml) supports a detailed specification of the mutation
process. Suppose only return statements, relational operators, and conditional operators
shall be mutated within the method classify of the class triangle.Triangle. The following
Mml script (tutorial.mml) expresses these requirements:

1 targetOp{
2 // Define the replacements for ROR
3 BIN(>)->{>=,!=,FALSE};
4 BIN(<)->{<=,!=,FALSE};
5 BIN(>=)->{>,==,TRUE};
6 BIN(<=)->{<,==,TRUE};
7 BIN(==)->{<=,>=,FALSE ,LHS ,RHS};
8 BIN(!=)->{<,>,TRUE ,LHS ,RHS};
9 // Define the replacements for COR

10 BIN(&&)->{==,LHS ,RHS ,FALSE};
11 BIN(||)->{!=,LHS ,RHS ,TRUE};
12 // Define the type of statement that STD should delete
13 DEL(RETURN);
14
15 // Enable the STD , COR , and ROR mutation operators
16 STD;
17 COR;
18 ROR;
19 }
20 // Call the defined operator group for the target method
21 targetOp <" triangle.Triangle :: classify(int ,int ,int)">;

Listing 2.1: Mml script that generates COR, ROR, and STD mutants, targeting only the
classify method in the class triangle.Triangle.

5

Section 4 provides a detailed description of the syntax and capabilities of the domain
specific language Mml. The Major framework provides a compiler (mmlc) that compiles
Mml scripts into a binary representation. Given the Mml script tutorial.mml, the mmlc

compiler is invoked with the following command:

major$ mmlc tutorial.mml tutorial.mml.bin

Note that the second argument is optional — if omitted, the compiler will add .bin to the
name of the provided script file, by default.

2.2 Generate mutants

To generate mutants based on the compiled Mml script tutorial.mml.bin (see Sec-
tion 2.1), the compiled script has to be passed as an argument to Major’s compiler.

2.2.1 Compiling from the command line

Use the -XMutator option to mutate and compile from the command line:

major$ javac -XMutator=tutorial.mml.bin -d bin src/triangle/Triangle.java
#Generated Mutants: 86 (104 ms)

2.2.2 Compiling with Apache Ant

If the source files shall be compiled using Apache Ant, the compile target of the corre-
sponding build.xml file needs to be adapted to use Major’s compiler and to provide the
necessary compiler option (See Section 3.4 for further details):

<property name="mutOp" value=":NONE"/>
<target name="compile" depends="init" description="Compile">

<javac srcdir="src" destdir="bin" debug="yes"
fork="yes" executable="pathToMajor/javac">

<compilerarg value="-XMutator${mutOp}"/>
</javac>

</target>

Given the compiled tutorial.mml.bin script and the adapted build.xml file, use the
following command to mutate and compile the source files:

major$ ant -DmutOp="=tutorial.mml.bin" compile

compile:
[javac] Compiling 1 source file to bin
[javac] #Generated Mutants: 86 (84 ms)

BUILD SUCCESSFUL
Total time: 0 seconds

6

2.2.3 Inspecting generated mutants

If mutation has been enabled (i.e., the -XMutator option is used), Major’s compiler re-
ports the number of generated mutants. Additionally, it produces the log file mutants.log
that contains detailed information about the generated mutants (see Section 3.2.1 for a
description of the format). The following example shows the log entries for the first 3
generated mutants:

major$ head -3 mutants.log
1:ROR:<=(int,int):<(int,int):triangle.Triangle@classify(int,int,int):11:a <= 0 |==> a < 0
2:ROR:<=(int,int):==(int,int):triangle.Triangle@classify(int,int,int):11:a <= 0 |==> a == 0
3:ROR:<=(int,int):TRUE(int,int):triangle.Triangle@classify(int,int,int):11:a <= 0 |==> true

Major also supports the export of generated mutants to individual source files — see
3.2.2 for more details.

2.3 Analyze mutants

The build.xml file has to provide a suitable mutation.test target to use Major’s muta-
tion analysis back-end, which performs the mutation analysis for a given test suite. The
following mutation.test target enables the mutation analysis and exports the results to
summary.csv, results.csv, and killed.csv (see Section 5 for further details):

<target name="mutation.test" description="Run mutation analysis">
<echo message="Running mutation analysis ..."/>
<junit printsummary="false"

showoutput="false"
mutationAnalysis="true"
summaryFile="summary.csv"
resultFile="results.csv"
killDetailsFile="killed.csv">

<classpath path="bin"/>
<batchtest fork="false">

<fileset dir="test">
<include name="**/*Test*.java"/>

</fileset>
</batchtest>

</junit>
</target>

7

Using Major’s version of ant, the following command invokes the mutation.test target:

major$ ant mutation.test

mutation.test:
[echo] Running mutation analysis ...

[junit] MAJOR: Mutation analysis enabled
[junit] MAJOR: --
[junit] MAJOR: Run 1 ordered test to verify independence
[junit] MAJOR: --
[junit] MAJOR: Preprocessing time: 0.04 seconds
[junit] MAJOR: --
[junit] MAJOR: Mutants generated: 86
[junit] MAJOR: Mutants covered: 86 (100.00%)
[junit] MAJOR: --
[junit] MAJOR: Export test map to testMap.csv
[junit] MAJOR: --
[junit] MAJOR: Run mutation analysis with 1 individual test
[junit] MAJOR: --
[junit] MAJOR: 1/1 - triangle.test.TestSuite (3ms / 86):
[junit] MAJOR: 880 (76 / 86 / 86) -> AVG-RTPM: 10ms
[junit] MAJOR: Mutants killed / live: 76 (76-0-0) / 10
[junit] MAJOR: --
[junit] MAJOR: Summary:
[junit] MAJOR:
[junit] MAJOR: Analysis time: 0.9 seconds
[junit] MAJOR: Mutation score: 88.37% (88.37%)
[junit] MAJOR: Mutants killed / live: 76 (76-0-0) / 10
[junit] MAJOR: Mutant executions: 86
[junit] MAJOR: --
[junit] MAJOR: Export summary of results to summary.csv
[junit] MAJOR: Export run-time results to results.csv
[junit] MAJOR: Export mutant kill details to killed.csv

BUILD SUCCESSFUL
Total time: 1 second

As configured in the build.xml file, the results of the mutation analysis are exported to
the files summary.csv, killed.csv, and results.csv, which provide the following infor-
mation:

• summary.csv: Summary of mutation analysis results.

• killed.csv: The reason why a mutant was killed — i.e., assertion failure, exception,
or timeout.

• results.csv: Detailed runtime information and mutation analysis results for each
executed test.

8

3 The Mutation Compiler (Major-Javac)

Major extends the OpenJDK Java compiler and implements conditional mutation as an
optional transformation of the abstract syntac tree (AST). In order to generate mutants,
this transformation has to be enabled by setting the compiler option -XMutator — if this
flag is not set, then the compiler works exactly as if it were unmodified. The compile-time
configuration of conditional mutation and the necessary runtime driver are externalized to
avoid dependencies and to provide a non-invasive tool. This means that Major’s compiler
can be used as a compiler replacement in any Java-based development environment.

3.1 Configuration

Major extends the non-standardized -X options to avoid potential conflicts with future
releases of the Java compiler. To use the mutation capabilities of Major’s compiler, the
conditional mutation transformation has to be generally enabled at compile-time using the
compiler option -XMutator. Major’s compiler supports (1) compiler sub-options and (2)
mutation scripts (use javac -X to see a description of all configuration options):

(1) javac -XMutator:<sub-options>

(2) javac -XMutator=<mml filename>

If the mutation step is enabled, Major’s compiler prints the number of generated mutants
at the end of the compilation process and produces the log file mutants.log, which contains
detailed information about each generated and embedded mutant.

3.1.1 Compiler options

Major’s compiler provides wildcards and a list of valid sub-options, which correspond to
the names of the available mutation operators. For instance, the following three commands
enable (1) all operators, using the wildcard ALL, (2) all but one operator (-LVR), and (3)
a custom subset of operators, namely AOR, ROR, and STD:

(1) javac -XMutator:ALL ...

(2) javac -XMutator:ALL,-LVR ...

(3) javac -XMutator:AOR,ROR,STD ...

Table 3.1 summarizes the mutation operators that are provided by Major’s compiler.

3.1.2 Mutation scripts

Instead of using compiler options, Major’s compiler can interpret mutation scripts written
in its domain specific language Mml. These Mml scripts enable a detailed definition and

9

Table 3.1: Mutation operators implemented in Major.

Mutation operator Example

AOR (Arithmetic Operator Replacement) a + b 7−→ a - b

LOR (Logical Operator Replacement) a ^ b 7−→ a | b

COR1 (Conditional Operator Replacement) a || b 7−→ a && b

ROR (Relational Operator Replacement) a == b 7−→ a >= b

SOR (Shift Operator Replacement) a >> b 7−→ a << b

ORU (Operator Replacement Unary) -a 7−→ ~a

EVR (Expression Value Replacement)

Replaces an expression (in an other-
wise unmutated statement) with a de-
fault value.

return a 7−→ return 0
int a = b 7−→ int a = 0

LVR (Literal Value Replacement)

Replaces a literal with a default value:
• A numerical literal is replaced

with a positive number, a nega-
tive number, and zero.
• A boolean literal is replaced

with its logical complement.
• A String literal is replaced with

the empty String.

0 7−→ 1
1 7−→ -1
1 7−→ 0

true 7−→ false
false 7−→ true

"Hello" 7−→ ""

STD (STatement Deletion)

Deletes (omits) a single statement:
• return statement
• break statement
• continue statement
• Method call
• Assignment
• Pre/post increment
• Pre/post decrement

return a 7−→ <no-op>

break 7−→ <no-op>

continue 7−→ <no-op>

foo(a,b) 7−→ <no-op>

a = b 7−→ <no-op>

++a 7−→ <no-op>

--a 7−→ <no-op>

1Also mutates atomic boolean conditions to true and false (e.g., if(flag) or if(isSet())).

10

a flexible application of mutation operators. For example, the replacement list for every
operator in an operator group can be specified and mutations can be enabled or disabled
for certain packages, classes, or methods. Within the following example, the mutation
process is controlled by the definitions of the compiled script file myscript.mml.bin:

• javac -XMutator="pathToFile/myscript.mml.bin" ...

Note that Major’s compiler interprets pre-compiled script files. Use the script compiler
mmlc to syntactically and semantically check, and compile a Mml script file. Major’s
domain specific language Mml is described in detail in the subsequent Section 4.

3.2 Logging and exporting generated mutants

3.2.1 Log file for generated mutants

Major’s compiler generates the log file mutants.log, which provides detailed information
about the generated mutants and uses a colon (:) as separator. The log file contains one
row per generated mutant, where each row in turn contains 7 columns with the following
information:

1. Mutants’ unique number (id)

2. Name of the applied mutation operator

3. Original operator symbol

4. Replacement operator symbol

5. Fully qualified name of the mutated method

6. Line number in original source file

7. Visualization of the applied transformation (from |==> to)

The following example gives the log entry for a ROR mutation that has the mutant id 11
and is generated for the method classify (line number 18) of the class Triangle:

11:ROR:<=(int,int):<(int,int):Triangle@classify:18:a <= 0 |==> a < 0

3.2.2 Source-code export of generated mutants

Major also supports the export of each generated mutant to an individual source file —
this feature is disabled by default. If enabled, Major duplicates the original source file for
each mutant, injects the mutant in the copy, and exports the resulting faulty copy. Major
reads the following two properties that control the export of generated mutants (default
values are given in parentheses):

• -J-Dmajor.export.mutants=[true|false] (false)

• -J-Dmajor.export.directory=<directory> (./mutants)

Major automatically creates the export directory and parent directories if necessary.
Note that, if you are mutating a large code base, exporting all mutants to individual

source files increases the compilation time and requires significantly more disk space than
the log file.

11

3.3 Driver class

Major references an external driver at runtime to gain access to a mutant identifier (M_NO)
and a method that monitors mutation coverage (COVERED). Listing 3.1 shows an example of
a simple driver class that provides both the mutant identifier and the mutation coverage
method. Note that the mutant identifier and the coverage method must be implemented
in a static context to avoid any overhead caused by polymorphism and instantiation.

1 public class Config {
2 public static int M_NO =0;
3 public static Set <Integer > covSet = new TreeSet <Integer >();
4
5 // Record coverage information
6 public static boolean COVERED(int from , int to) {
7 synchronized (covSet) {
8 for (int i=from; i<=to; ++i) {
9 covSet.add(i);

10 }
11 }
12 return false;
13 }
14 // Reset the coverage information
15 public static void reset () {
16 synchronized (covSet) {
17 covSet.clear ();
18 }
19 }
20 // Get (copied) list of all covered mutants
21 public static List <Integer > getCoverageList () {
22 synchronized (covSet) {
23 return new ArrayList <Integer >(covSet);
24 }
25 }
26 }

Listing 3.1: Driver class providing the mutant identifier M_NO and coverage method COVERED.

The archive and source files of the default driver implementation is provided in the
config directory. Note that the driver class does not have to be available on the classpath
during compilation. Major does not try to resolve the driver class at compile-time but
instead assumes that the mutant identifier and the coverage method will be provided by
the driver class at runtime. Thus, Major’s compiler is non-invasive and the mutants can
be generated without having a driver class available during compilation.

3.4 Integration into apache Ant’s build.xml

Major’s compiler can be used standalone, but also in build systems, such as Apache Ant.
Consider, for example, the following compile target in an Apache Ant build.xml file:

12

<target name="compile" depends="init" description="Compile">
<javac srcdir="src"

destdir="bin">
</javac>

</target>

To use Major’s compiler without any further changes to your environment, add the
following 3 options to the compile target:

<property name="mutOp" value=":NONE"/>
<target name="compile" depends="init" description="Compile">

<javac srcdir="src"
destdir="bin"

fork="yes"
executable="pathToMajor/bin/javac">
<compilerarg value="-XMutator${mutOp}"/>

</javac>
</target>

There is no need to duplicate the entire target since Major’s compiler can also be used
for regular compilation. The following three commands illustrate how the compile target
shown above can be used to: (1) compile without mutation, (2) compile with mutation
using compiler options, and (3) compile with mutation using a Mml script:

(1) ant compile

(2) ant -DmutOp=":ALL" compile

(3) ant -DmutOp="=pathToFile/myscript.mml.bin" compile

Note that the mutOp property provides a default value (:NONE) if this property is not set on
the command line.

13

4 The Major Mutation Language
(Major-Mml)

Major is designed to support a wide variety of configurations by means of its own domain
specific language, called Mml. Generally, a Mml script contains a sequence of an arbitrary
number of statements, where a statement represents one of the following entities:

• Variable definition

• Replacement definition

• Definition of statement types for the STD operator

• Definition of literal types for the LVR operator

• Definition of a mutation operator group

• Invocation of a mutation operator (group)

• Line comment

While the first five statements are terminated by a semicolon, an operator definition is
encapsulated by curly braces and a line comment is terminated by the end-of-line.

4.1 Statement scopes

Mml provides statement scopes for replacement definitions and operator invocations to
support the mutation of a certain package, class, or method within a program. Figure 4.1
depicts the definition of a statement scope, which can cover software units at different levels
of granularity — from a specific method up to an entire package. Note that a statement
scope is optional as indicated by the first rule of Figure 4.1. If no statement scope is
provided, the corresponding replacement definition or operator call is applied to the root
package. The scope’s corresponding entity, that is package, class, or method, is determined
by means of its fully qualified name, which is referred to as flatname. Such a flatname
can be either provided within delimiters (quotes) or by means of a variable identified by
IDENT.
Figure 4.2 shows the grammar rules for assembling a flatname. The naming conventions

for valid identifiers (IDENT) are based on those of the Java programming language due to
the fact that a flatname identifies a certain entity within a Java program. The following
four examples show valid flatnames for a package, a class, a set of overloaded methods,
and a particular method:

• "java.lang"

• "java.lang.String"

14

< IDENT >

" flatname "

Figure 4.1: Syntax diagram for the definition of a statement scope.

IDENT . IDENT $ IDENT @ IDENT

INTEGER <init>

<clint>

:: method

Figure 4.2: Syntax diagram for the definition of a flatname.

• "java.lang.String@substring"

• "java.lang.String::substring(int,int)"

Note that the syntax definition of a flatname also supports the identification of innerclasses
and constructors, consistent with the naming conventions of Java. For Example, the sub-
sequent definitions address an inner class, a constructor, and a static class initializer:

• "foo.Bar$InnerClass"

• "foo.Bar@<init>"

• "foo.Bar@<clinit>"

4.2 Overriding and extending definitions

In principle, mutation operators can be enabled (+), which is the default if the flag is
omitted, or disabled (-) and this behavior can be defined for each scope. In the following
example, the AOR mutation operator is generally enabled for the package org but, at the
same time, disabled for the class Foo within this package:

+AOR<"org">;

-AOR<"org.Foo">;

Note that the flag for enabling or disabling operators is optional — the default flag (+) for
enabling operators improves readability but can be omitted.

15

With regard to replacement definitions, there are two different possibilities: Individual
replacements can be added (+) to an existing list or the entire replacement list can be over-
ridden (!), where the latter represents the default case if this optional flag is omitted. The
following example illustrates this feature, where the general definition of replacements for
the package org is extended for the class Foo but overriden for the class Bar. The replacement
lists that are effectively applied to the package and classes are given in comments.

BIN(*)<"org"> -> {+,/}; // * -> {+,/}

+BIN(*)<"org.Foo"> -> {%}; // * -> {+,/,%}

!BIN(*)<"org.Bar"> -> {-}; // * -> {-}

4.3 Operator groups

To prevent code duplication due to the repetition of equal definitions for several scopes
(i.e., the same replacements or enabled mutation operators for several packages, classes, or
methods), Mml provides the possibility to declare own operator groups. Such a group may
in turn contain any statement that is valid in the context of the Mml, except for a call of
another operator group. An operator group is defined by means of a unique identifier and
its statements are enclosed by curly braces, as shown in the following example:

myGroup {

BIN(*) -> {+,/};

AOR;

}

4.4 Script examples

Listing 4.1 shows a simple example of a mutation script that includes the following tasks:

• Define specific replacement lists for AOR and ROR

• Invoke the AOR and ROR operators on reduced lists

• Invoke the LVR operator without restrictions

The more enhanced script in Listing 4.2 exploits the scoping capabilities of Mml in line
8 and 13-20, and takes, additionally, advantage of the possibility to define a variable in
line 11 to avoid code duplication in the subsequent scope declarations. Both features are
useful if only a certain package, class, or method shall be mutated in a hierarchical software
system.
Finally, the example in Listing 4.3 visualizes the grouping feature, which is useful if the
same group of operations (replacement definitions or mutation operator invocations) shall
be applied to several packages, classes, or methods.

16

1 // Define own replacement list for AOR
2 BIN (*) -> {/ ,%};
3 BIN (/) -> {* ,%};
4 BIN (%) -> {* ,/};
5
6 // Define own replacement list for ROR
7 BIN(>) -> {<=,!=,==};
8 BIN (==) -> {<,!=,>};
9

10 // Define types of literals that should be mutated by the LVR operator.
11 // Literal type is one of {BOOLEAN , NUMBER , STRING }.
12 LIT(NUMBER);
13 LIT(BOOLEAN);
14
15 // Enable and invoke mutation operators
16 AOR;
17 ROR;
18 LVR;

Listing 4.1: Mml script that 1) defines replacements for the AOR and ROR mutation op-
erators, 2) defines the types of the literals that should be mutated by the LVR
mutation operator, and 3) enables AOR, ROR, and LVR on the root node.

1 // Definitions for the root node
2 BIN(>=)->{TRUE ,>,==};
3 BIN(<=)->{TRUE ,<,==};
4 BIN(!=)->{TRUE ,<,> };
5 LIT(NUMBER);
6 LVR;
7
8 // Definition for the package org
9 ROR <"org">;

10
11 // Variable definition for the class Foo
12 foo="org.x.y.z.Foo";
13
14 // Scoping for replacement lists
15 BIN(&&)<foo >->{LHS ,RHS ,==, FALSE };
16 BIN(||)<foo >->{LHS ,RHS ,!=,TRUE };
17
18 // Scoping for mutation operators
19 -LVR <foo >;
20 ROR <foo >;
21 COR <foo >;

Listing 4.2: Enhanced Mml script that uses scoping and a variable definition.

17

1 myOp{
2 // Definitions for the operator group
3 BIN(>=)->{TRUE ,>,==};
4 BIN(<=)->{TRUE ,<,==};
5 BIN(!=)->{TRUE ,<,> };
6 BIN(&&)->{LHS ,RHS ,==, FALSE};
7 BIN(||)->{LHS ,RHS ,!=,TRUE };
8 // Mutation operators enabled in this group
9 ROR;

10 COR;
11 }
12
13 // Calls of the defined operator group
14 myOp <"org">;
15 myOp <"de">;
16 myOp <"com">;

Listing 4.3: Mml script that defines a mutation operator (myOp) and applies this operator
to different scopes (i.e., the packages org, de, and com).

18

5 The Mutation Analysis Back-end
(Major-Ant)

Major provides a default back-end for mutation analysis, which extends the Apache Ant
junit task. This back-end supports JUnit 3 and 4 tests. Note that Major does currently
not support forking a JVM when executing JUnit tests, meaning that the fork option must
not be set to true — forking will be supported in a future release.

5.1 Setting up a mutation analysis target

Most software projects that are build with Apache Ant provide a test target, which executes
the corresponding unit tests. Even if no such target exists, it can be easily set up to
execute a set of given unit tests. The following code snippet shows an exemplary test target
(See http://ant.apache.org/manual/Tasks/junit.html for a detailed description of the
options used in the junit task):

<target name="test" description="Run all unit test cases">
<junit printsummary="true"

showoutput="true"
haltonfailure="true">

<formatter type="plain" usefile="true"/>
<classpath path="bin"/>
<batchtest fork="no">

<fileset dir="test">
<include name="**/*Test*.java"/>

</fileset>
</batchtest>

</junit>
</target>

To enable mutation analysis in Major’s enhanced version of the junit task, the option
mutationAnalysis has to be set to true. For the sake of clarity, it is advisable to duplicate
an existing test target, instead of parameterizing it, and to create a new target, e.g., called
mutation.test (See Section 5.3 for recommended configurations):

19

http://ant.apache.org/manual/Tasks/junit.html

<target name="mutation.test" description="Run mutation analysis">
<junit printsummary="false"

showoutput="false"
haltonfailure="true"

mutationAnalysis="true"
summaryFile="summary.csv"
resultFile="results.csv"

killDetailsFile="killed.csv">

<classpath path="bin"/>
<batchtest fork="no">

<fileset dir="test">
<include name="**/*Test*.java"/>

</fileset>
</batchtest>

</junit>
</target>

5.2 Configuration options for mutation analysis

Major enhances the junit task with additional options to control the mutation analysis
process. The available, additional, options are summarized in Table 5.1.

5.3 Performance optimization

During the mutation analysis process, the provided JUnit tests are repeatedly executed.
For performance reasons, consider the following advices when setting up the mutation
analysis target for a JUnit test suite:

• Turn off logging output (options showsummary, showoutput, etc.)

• Do not use result formatters (nested task formatter, especially the usefile option)

For performance reasons, especially due to frequent class loading and thread executions,
the following JVM options are recommended:

• -XX:ReservedCodeCacheSize=128M

• -XX:MaxPermSize=256M

20

Table 5.1: Additional configuration options for Major-Ant’s JUnit task

Description Values Default

mutationAnalysis Enable mutation analysis [true|false] false

mutantsLogFile The path to the mutants.log
file produced my Major-javac

<String> mutants.log

coverage Enable mutation coverage [true|false] true

timeoutFactor Base timeout factor to
compute the timeout for each
test

<int> 8

timeoutOffset Offset in ms that should be
added to the computed test
timeout

<int> 0

sort Sort tests. If sort_methods is
provided then Major runs and
reports the results for each test
case (method). Otherwise
Major runs and reports the
results for each test class

[original|random|
sort_classes|
sort_methods]

original

excludeFailingTests Exclude all failing tests
(if haltonfailure is set to false)

[true|false] true

excludeFile Exclude mutants whose ids are
listed in this file (1 id per row)

<String> null

summaryFile Export summary of results to
this file (csv)

<String> summary.csv

resultFile Export detailed runtime
information to this file (csv)

<String> null

killDetailsFile Export kill details for each
mutant to this file (csv)

<String> null

filterDetailsFile Export filtering details for
each mutant to this file (csv)

<String> null

exportCovMap Export mutation coverage map [true|false] false

covMapFile File name for mutation
coverage map (csv)

<String> covMap.csv

exportKillMap* Export mutation kill map [true|false] false

killMapFile File name for mutation kill
map

<String> killMap.csv

testMapFile File name for mapping of test
id to test name (csv)

<String> testMap.csv

*Note: this option leads to the execution of every test on every covered mutant!

21

	Overview
	Installation
	How to get started

	Step by Step Tutorial
	Prepare and compile a Mml script
	Generate mutants
	Compiling from the command line
	Compiling with Apache Ant
	Inspecting generated mutants

	Analyze mutants

	The Mutation Compiler (Major-Javac)
	Configuration
	Compiler options
	Mutation scripts

	Logging and exporting generated mutants
	Log file for generated mutants
	Source-code export of generated mutants

	Driver class
	Integration into apache Ant's build.xml

	The Major Mutation Language (Major-Mml)
	Statement scopes
	Overriding and extending definitions
	Operator groups
	Script examples

	The Mutation Analysis Back-end (Major-Ant)
	Setting up a mutation analysis target
	Configuration options for mutation analysis
	Performance optimization

